Những câu hỏi liên quan
No ri do
Xem chi tiết
Akai Haruma
11 tháng 5 2019 lúc 23:00

Lời giải:
Vì $abc=1$ nên:

\((a+bc)(b+ac)(c+ab)=a(a+bc)b(b+ac)c(c+ab)=(a^2+1)(b^2+1)(c^2+1)\)

Áp dụng BĐT Bunhiacopxky:

\((a^2+1)(1+b^2)\geq (a+b)^2; (a^2+1)(1+c^2)\geq (a+c)^2; (b^2+1)(1+c^2)\geq (b+c)^2\)

Nhân theo vế và thu gọn:

\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)\geq (a+b)(b+c)(c+a)\)

Lại có: Theo BĐT AM-GM thì:

\((a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc\)

\(\geq (ab+bc+ac)(a+b+c)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8(a+b+c)(ab+bc+ac)}{9}(*)\) (đây là BĐT khá quen thuộc rồi)

Do đó:

\(P=\frac{(a+bc)(b+ca)(c+ab)}{ab+bc+ac}+\frac{1}{a+b+c}=\frac{(a^2+1)(b^2+1)(c^2+1)}{ab+bc+ac}+\frac{1}{a+b+c}\geq \frac{(a+b)(b+c)(c+a)}{ab+bc+ac}+\frac{1}{a+b+c}\)

\(P\geq \frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\)

Áp dụng BĐT (*) và AM-GM:

\(\frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}\geq 7.\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(ab+bc+ac)}=\frac{7}{9}(a+b+c)\geq \frac{7}{9}.3\sqrt[3]{abc}=\frac{7}{3}\)

\(\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\geq 2\sqrt{\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)(a+b+c)}}\geq 2\sqrt{\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(a+b+c)(ab+bc+ac)}}=\frac{2}{3}\)

\(\Rightarrow P\geq \frac{7}{3}+\frac{2}{3}=3\)

Vậy $P_{\min}=3$

Bình luận (0)
nguyễn ngọc dinh
12 tháng 5 2019 lúc 6:37

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1+1-1\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\ge a^2+b^2+c^2+2ab+2bc+2ac-1=\left(a+b+c\right)^2-1\)\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\)

Dấu " = " xảy ra <=> ...

Ta có: \(\frac{1}{3}.\left(a+b+c\right)^2\ge ab+bc+ca\)( BĐT quen thuộc tự c/m)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{\frac{1}{3}\left(a+b+c\right)^2}-\frac{1}{\frac{1}{3}\left(a+b+c\right)}+\frac{1}{a+b+c}\)\(=3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\)

Ta có: \(abc=1\Leftrightarrow\sqrt[3]{abc}=1\le\frac{a+b+c}{3}\left(AM-GM\right)\)

\(\Rightarrow a+b+c\ge3\)

Dấu " = " xảy ra <=> ...

\(\Rightarrow P\ge3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\ge3\)

Dấu " = " xảy ra <=> a=b=c=1

KL:...........

Bình luận (0)
Bùi Trần Nhật Thanh
Xem chi tiết
Dang Son Nguyen
Xem chi tiết
Trần Thanh Phương
24 tháng 7 2019 lúc 19:43

Ta có : \(\left\{{}\begin{matrix}a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\\b+ca=b\left(a+b+c\right)+ca=\left(b+c\right)\left(a+b\right)\\c+ab=c\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)

Từ đó ta có :

\(P=\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)}{\left(a+c\right)\left(b+c\right)}}\)

\(P=\Sigma\sqrt{\left(a+b\right)^2}\)

\(P=\Sigma\left(a+b\right)\)

\(P=2\left(a+b+c\right)\)

\(P=2\)

Bình luận (2)
Nguyễn Khắc Quang
Xem chi tiết
Phạm Thành Đông
21 tháng 3 2021 lúc 10:48

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)

Bình luận (0)
 Khách vãng lai đã xóa
pham trung thanh
Xem chi tiết
vũ tiền châu
27 tháng 12 2017 lúc 13:37

ta có A=\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}=\frac{a^2+b^2+c^2}{abc}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}\)

mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow A\ge\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}+...\)

Áp dụng bđt co si ta có , \(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{1}{\sqrt{2}}\)

tương tự mấy cái kia rồi + vào thì A>=...

Bình luận (0)
Nhật Vy Nguyễn
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Bùi Hữu Vinh
16 tháng 2 2021 lúc 23:14

giúp với 

Bình luận (0)
 Khách vãng lai đã xóa
Đức Lộc
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 1 2020 lúc 1:15

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)

Tươn tự rồi cộng vế theo vế:

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)

Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)

\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)

Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Bình Minh
Xem chi tiết